Calibration of computer models for radiative shock experiments

Jean Giorla¹, Emeric Falize^{1,4}, Clotilde Busschaert^{1,4}, Berenice Loupias¹, Michel Koenig², Alessandra Ravasio², Alexandra Dizire², Josselin Garnier³, and Claire Michaut⁴

¹CEA/DAM/DIF, F-91297, Arpajon, France ²LULI, Unit Mixte 7605 CNRS-CEA-Ecole, Polytechnique, Palaiseau, France ³Laboratoire J-L Lions, Universit Paris VII, 75005 Paris, France ⁴LUTH, Observatoire de Paris, Universit Paris-Diderot, 92190 Meudon, France

March 22, 2012

Abstract

POLAR experiments aimed to mimic the astrophysical accretion shock formation in laboratory using high-power laser facilities. The dynamics and the main physical properties of the radiative shock produced by the collision of the heated plasma with a solid obstacle have been characterised on recent experiments and compared to radiation hydrodynamic simulations. This poster will present the statistical method based on Bayesian inference used to calibrate the main unknown parameters of the simulation and to quantify the model uncertainty.