Interaction of radiatively cooled plasma jets with collimated, supersonic gas flows

F. Suzuki-Vidal¹, S.V. Lebedev¹, M. Krishnan², J. Skidmore¹,
G.F. Swadling¹, A.J. Harvey-Thompson^{1,5}, M. Bocchi¹, M.
Bennett¹, S.N. Bland¹, G. Burdiak¹, J.P. Chittenden¹, P. de
Grouchy¹, G.N. Hall¹, E. Khoory¹, L. Pickworth¹, S. Stafford¹,
L. Suttle¹, R.A. Smith¹, S. Patankar¹, K. Wilson-Elliot², R.
Madden², A. Ciardi³, and A. Frank⁴

 ¹Imperial College London, London, UK
 ²Alameda Applied Sciences Corporation, Alameda, CA, USA
 ³Observatoire de Paris, Paris, France
 ⁴University of Rochester, Rochester, NY, USA
 ⁵* Currently at Sandia National Laboratories, Albuquerque, NM, USA

March 22, 2012

Abstract

A supersonic (Mach 3-5), radiatively cooled plasma jet is produced by the ablation of plasma from a radial foil, a metallic disk subjected to a 1.4 MA, 250 ns current pulse from the MAGPIE generator. The ablated plasma converges on axis, producing a steady and collimated jet with a typical axial velocity of 100 km/s.

The study of jet-ambient interactions is achieved by introducing a neutral, cold gas above the foil using a fast valve with a supersonic gas nozzle. The system was adjusted to study different interaction geometries, and to vary critical parameters such as the jet-ambient density contrast. The effects of radiative cooling on the working surface of the jet are studied by varying the gas composition. Results from experiments and 3-D MHD simulations using the GORGON code will be presented and discussed.

Work supported by EPSRC Grant No. EP/G001324/1, by the NNSA under DOE Cooperative Agreements No. DE-F03-02NA00057 and No. DE-SC-0001063, by DOE SBIR Grant DE-FG02-08ER85030, and by a Marie Curie European Reintegration Grant.