Observations of anomalous plasmoid ejection, plasma jets and electron diffusion regions of magnetic reconnections in laser-plasma experiments

Quan-Li Dong¹, Shou-Jun Wang¹, Da-Wei Yuan¹, Xun Liu¹, Yu-Tong Li¹, Xiao-Xuan Lin¹, Hui-Gang Wei¹, Jia-Yong Zhong¹, Jian-Rong Shi¹, Bo-Bin Jiang¹, Kai Du¹, Yong-Jian Tang³, Neng Hua³, Zhan-Feng Qiao³, Kui-Xi Huang³, Ming Chen³, Jian-Qiang Zhu⁴, Gang Zhao², Zheng-Ming Sheng^{1,5}, and and Jie Zhang^{1,5}

¹1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
²2 National Astronomical Observatories of China, Chinese

Academy of Sciences. Beijing 100012, China

³3 Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China

⁴4 National Laboratory on High Power Lasers and Physics, Shanghai, 201800, China

⁵5 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China

March 22, 2012

Abstract

The driving mechanism of the solar flares and coronal mass ejections is a topic of ongoing debates except the consensus that the magnetic reconnection plays key roles during the impulsive process. While present solar researches mostly depend on observations and theoretical models, laboratory experiments based on high energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings. In this article, we show laboratory modelling of the solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to Euler similarity between laboratory and solar plasma systems, present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense, and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as the solar flares. On the other hand, the experimental results also present three elongated electron diffusion regions, which are similar to tens of magnetotail observations through last decades.