Expanding shock waves from 100 Gbar implosions on the National Ignition Facility

Siegfried Glenzer¹, Andrea Kritcher¹, Art Pak¹, Tammy Ma¹,
Steven Ross¹, Steve Glenn¹, David Bradley¹, Tilo Dppner¹,
Joseph Ralph¹, Riccardo Tommasini¹, Andrew MacPhee¹,
Nobuhiko Izumi¹, Eduard Dewald¹, John Moody¹, Sebastian
LePape¹, Andrew Mackinnon¹, Steven Weber¹, Pierre Michel¹,
Laurent Divol¹, David Farley¹, John Klein², and George Kvrala²

¹Lawrence Livermore National Laboratory ²Los Alamos National Laboratory

March 22, 2012

Abstract

Inertial confinement fusion implosion experiments on the National Ignition Facility show a supernova-like emission ring after peak capsule compression. These experiments use thermonuclear fuel fielded as a cryogenic layer on the inside of a spherical plastic capsule in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams with a total laser energy of 1.6 mega joules compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central 3 keV hot-spot plasma of 50 μ m diameter. X-ray and neutron imaging of the compressed core and fuel indicate high fuel areal densities of 1 g cm⁻² with fuel densities approaching 600 g cm⁻³. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures that have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The implosions reach stagnation pressures above 100 Gbar driving a spherical shock that is expanding into the ambient plasma with velocities of 300 km/s. The comparison with radiation-hydrodynamic simulations indicates that the shocks provide a signature of the implosion energy.

*This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.