Laboratory Experiments to Study Collisionless Shocks

Y. Sakawa¹, Y. Kuramitsu¹, T. Morita¹, T. Ide¹, K. Nishio¹, H. Ide¹, K. Tsubouchi¹, K. Tomita², K. Uchino², N. Woolsey³, C. Murphy⁴, G. Gregori⁴, A. Ravasio⁵, A. Pelka⁵, M. Koenig⁵, A. Spitkovsky⁶, N. L. Kugland⁷, J. S. Ross⁷, H.-S. Park⁷, B. Remington⁷, and H.Takabe¹

¹Osaka University, Suita, Osaka, 565-0871, Japan
²Kyushu University, Kasuga, Fukuoka 816-8580, Japan
³Department of Physics, University of York, Heslington, YO10 5DD, UK
⁴Department of Physics, Oxford University, Oxford, OX1 3PU, UK
⁵LULI, Ecole Polytechnique, 91128 Palaiseau, France
⁶Department of Astrophysical Sciences, Princeton University, Princeton NJ, USA
⁷Lawrence Livermore National Lab, 7000 East Ave, Livermore CA, USA

March 22, 2012

Abstract

Collisionless shocks are often observed in astrophysical plasmas. For example in a shock wave observed in a supernova remnant, a coulomb mean-free-path is much longer than the shock-front thickness. Large amplitude turbulent waves and energetic particles are also observed in the shock environments. Diffusive shock acceleration is considered to be a standard model for non-thermal acceleration of energetic particles or cosmic rays in the universe. A laboratory experiment can be an alternative approach to study collisionless shocks and particle acceleration.

In this paper we investigate laboratory experiments to study collisionless shock generation in counter-streaming plasmas using Gekko XII HIPER laser system (352 nm (3), 500 ps, ~100 J/beam, $< 10^{15}$ W/cm²). The plasmas and shocks were sutdied by optical diagnostics, such as interferometry, shadowgraphy, self-emission measurements, and by Thomson scattering measurements. We also investigate OMEGA and OMEGA EP experimental results to study collisionless shocks, and an experimental proposal to demonstrate the formation of Weibel-mediated collisionless shocks using the National Ignition Facility.