Experiments to probe warm dense matter conditions for planetary science

9th International Conference on High Energy Density Laboratory Astrophysics

April 30 – May 4, 2012

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Peter Celliers

Outline

- Planetary core conditions: what and why?
- Laboratory techniques
 - Dynamic compression techniques
 - Drivers & facilities
 - Diagnostics
- Survey of recent results
- Summary

Core conditions in planets reach multi-Mbar pressures at moderate temperatures

Neptune: central pressures 8 Mbar and temperatures ~5000 K

Jupiter: central pressures ~77 Mbar and temperatures ~16000 K

Lawrence Livermore National Laboratory

C. J.

Understanding planetary interiors depends on theoretical models

- Planetary models are constructions based on a combination of theory and observation
- A few basic parameters are known:
 - Mass, radius, luminosity, and some gravitational moments, B-field, surface composition
- Interior models depend on our knowledge of the high pressure phase diagrams of the abundant elements and their compounds (H, He, C, O, N, Mg, Si, Fe etc.)
 - Equation of state gives density profile
 - Conductivity and metallic transitions magnetic dynamo models
 - Phase transitions?
 - Introduce new complications in the structure and transport mechanisms

Extra-Solar Transiting Planets

More than 500 known planets, most do not match planet evolution models

EOS models important to infer compositions from mass-radius relationships

Outline

- Planetary core conditions: what and why?
- Laboratory techniques
 - Dynamic compression techniques
 - Drivers & facilities
 - Diagnostics
- Survey of recent results
- Summary

Laboratory dynamic compression techniques to reach core conditions

- Shock waves
- Ramp compression techniques
- Dynamic compression facilities
- Hybrid techniques

Shock compression technique

Rankine-Hugoniot relations (conservation laws):

$$\frac{\rho}{\rho_0} = \frac{u_s}{u_s - u_p} \qquad \text{[mass]}$$

$$P - P_0 = \rho_0 u_s u_p \qquad \text{[momentum]}$$

$$E - E_0 = \frac{1}{2} P(\frac{1}{\rho_0} - \frac{1}{\rho}) \quad \text{[energy]}$$

Impulsive load

- 5 parameters (*P*, ρ , *E*, u_s , u_p) and 3 equations
 - need measure two parameters to determine the rest
 - We measure velocities \rightarrow infer P, ρ , E
 - Temperature has to be determined independently

Shock wave data sets

Ramp compression

Apply a time-varying load to the sample

 Fundamental measurement ansatz: thermodynamic state is a function of the particle speed

Continuous compression follows a quasi-isentropic path

Ramp compression keeps the sample solid at high pressure

Ramp compression experiments yield quantitative EOS data

- Measure material motion at two or more positions – determine the Lagrangian sound speed
- As with shock technique: absolute EOS is inferred from wave speed measurements

$$c_{L}(u_{p}) = \Delta x_{p} / \Delta t \qquad \text{[observable]}$$

$$V(u) = V_{0} \int_{0}^{u} \frac{1}{c_{L}(u_{p})} du_{p} \qquad \text{[mass]}$$

$$P(u) = P_{0} + \rho_{0} \int_{0}^{u} c_{L}(u_{p}) du_{p} \qquad \text{[momentum]}$$

$$\Rightarrow P(V), \text{ and } E(V) = E_{0} - \int_{V_{0}}^{V} P(V') dV'$$

Iterative Lagrangian analysis to extract stress and density (Rothman, et al., (2005)

Dynamic compression facilities

High pressures generated by projectile impact (gas guns)

Graded density impactor generates ramp compression wave

Ngyuen, Holmes, Chau (LLNL)

High pressures generated by pulsed power (Z accelerator)

Direct application of magnetic stress to the sample

Magnetically-accelerated flyer plate а cathode anode short circuit (\mathbf{X}) $\vec{J} \times \vec{B}$ $\vec{J} \times \vec{B}$ targets 38 mm flyers ak-gap R.W. Lemke et al, IntJ.Impact Eng. 38 480 (2011) Plate impact generates single • strong shock (aka gun expts) Peak velocities: \sim 42 km/s (AI) • ~ 22 km/s (Cu) Peak pressures ~30 – 40 Mbar • depending on the target

Shock hugoniot applications

High pressures generated by lasers

Pulse shape & target determines if compression is a shock or ramp

Basic diagnostics

Confined geometries & hybrid variations

Outline

- Planetary core conditions: what and why?
- Laboratory techniques
 - Dynamic compression techniques
 - Drivers & facilities
 - Diagnostics
- Survey of recent results
- Summary

High precision EOS

physics

Melting of diamond on the Hugoniot

Phase transition in MgSiO₃

Compression of He to 1.5 g cm⁻³

Reflectivity measurements

Multiple shock compression of deuterium

25

Rygg

Multi-shocked D₂ Electrical conductivity: theory vs experiment

Lawrence Livermore National Laboratory

Rygg

26 L

Diamond EOS Ramp compression of diamond: 8 Mbar at OMEGA, 50 Mbar at NIF

Important applications to confine reverberation samples for x-ray probing

Lawrence Livermore National Laboratory

27

EXAFS on Fe

EXAFS on ramp-compressed Fe

Experimental setup: x-ray absorption spectroscopy with implosion backlighter

Fe is close-packed up to 560GPa, 8000K

Pressure is probed by VISAR, showing quasi-ramp compression by multi-shock

Fe EXAFS data confirm off-Hugoniot states in quasi-ramp compression

Ping, Hicks, Eggert, Rygg, Coppari

28

X-ray diffraction Fe, MgO & Ta

VISAR

Omega phase best fit with V=29 cc, and C/a=0.56 S.1 Mbar Ramp Compression

c/a=0.612 and a shuffle every third (112)_{bcc} plane

Yields the Omega phase with a $(112)_{bcc} \rightarrow (300)_{\Omega}$ Correspondence

Lawrence Livermore National Laboratory

Density (g/cc)

29

Gigabar EOS: Radiographic measurement of convergent shock Based on NIF ignition hohlraum: spherically symmetric drive.

Lawrence Livermore National Laboratory

Kritcher, Swift, Hawreliak, Falcone et al

30

Hydrogen at TPa pressures

Summary

- New capabilities in dynamic compression facilities like NIF, OMEGA and Z can achieve planetary core conditions
- Recent developments in compression techniques and diagnostics are enabling:
 - Creation of material states at planetary core conditions
 - High precision measurements of EOS
 - Probing of new high pressure structures and phases

