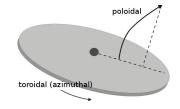
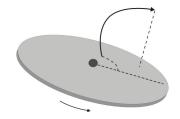
Outflow collimation by a poloidal magnetic field

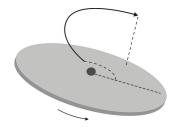
Andrea Ciardi andrea.ciardi@obspm.fr

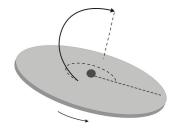
LERMA

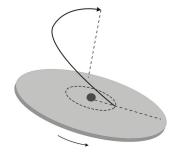
Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112


In collaboration with the LULI and LNCMI groups: B. Albertazzi, L. Romagnani, M. Nakatsutsumi, S. Chen, H-P. Schlenvoight, F. Kroll, T. Cowan, O. Portugall, J. Béard, J. Billette, H. Pépin, J. Fuchs, T. Vinci, C. Riconda


"Main collimation mechanism" requires a toroidal (azimuthal) field component


From the (axisymmetric) induction equation:


$$\frac{\partial B_{\phi}}{\partial t} = -r \mathbf{B}_{\mathsf{pol}} \cdot \nabla \omega(\mathbf{r}, \mathbf{z})$$


differential angular rotation, ω , along an initially poloidal field line, **B**_{pol}, generates an azimuthal component B_{ϕ} .

"Main collimation mechanism" requires a toroidal (azimuthal) field component

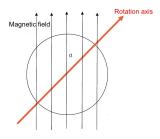
Magnetic (Lorentz) force on the plasma $\mathbf{F} = \mathbf{j} \times \mathbf{B}$ can be written as (e.g. Ferreira 1997): Azimuthal:

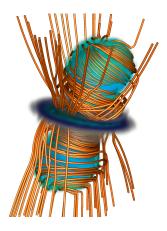
$$m{F}_{\phi} = rac{B_{pol}}{\mu_0 r}
abla_{\parallel} (r B_{\phi})$$

Poloidal:

$$egin{aligned} \mathcal{F}_{\parallel} &= -rac{B_{\phi}}{\mu_0 r}
abla_{\parallel} \left(rB_{\phi}
ight) \ \mathcal{F}_{\perp} &= -rac{B_{\phi}}{\mu_0 r}
abla_{\perp} \left(rB_{\phi}
ight) + j_{\phi} B_{pol} \end{aligned}$$

We are interested in $B_{\phi} = 0$ and the effects of B_{pol} only $\rightarrow j_{\phi}B_{pol}$

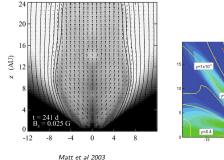


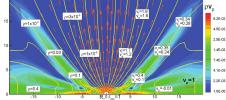

Collimation by the magnetic field

Outflows from collapsing pre-stellar cores 1

Gravitationally collapsing dense core of $1\ {\rm solar}$ mass.

- ightarrow~ $R_{core}\sim$ 1000 AU
- $\rightarrow~n\sim 10^{6}~{
 m cm}^{-3}$
- ightarrow~T= 10 K
- $ightarrow \mu =$ 5 highly-magnetized, supercritical





¹Hennebelle et al 2009, Ciardi et al 2010, Joos et al 2012

Collimation by poloidal magnetic field

outflow collimation by disk field, star-disk interaction...²

Romanova et al 2009

²Stone et al 1992, Spruit et al 1997, Matt et al 2003, Fendt 2006, Romanova et al 2009

Collimation by poloidal magnetic field

outflow collimation by disk field, star-disk interaction...² Importance of magnetic field parametrized by

$$\sigma = \frac{B_z^2}{4\pi\rho v_{out}^2}$$

Observations

Tab	ie i. Energy u	Photosphere	SiO	H ₂ O	OH
B R Vexp n _{H2} T	[G] [AU] [km s ⁻¹] [cm ⁻³] [K]	$\sim 50?$ 	$\begin{array}{c} \sim 3.5 \\ \sim 3 \\ [2-4] \\ \sim 5 \\ \sim 10^{10} \\ \sim 1300 \end{array}$	~ 0.3 ~ 25 [5 - 50] ~ 8 $\sim 10^8$ ~ 500	~ 0.003 ~ 500 [100 - 10.000] ~ 10 $\sim 10^{6}$ ~ 300
$B^2/8\pi$ nKT ρV_{exp}^2 V_A	[dyne cm ⁻²] [dyne cm ⁻²] [dyne cm ⁻²] [km s ⁻¹]	$\begin{array}{c} \mathbf{10^{+2.0}?} \\ \mathbf{10^{+1.5}} \\ \mathbf{10^{+1.5}} \\ \mathbf{10^{+1.5}} \\ \sim 15 \end{array}$	10 ^{+0.1} 10 ^{-2.8} 10 ^{-2.5} ~ 100	$\begin{array}{c} \mathbf{10^{-2.4}}\\ 10^{-5.2}\\ 10^{-4.1}\\ \sim 300 \end{array}$	$10^{-6.4}$ $10^{-7.4}$ $10^{-5.9}$ ~ 8

Vlemmings 2011

Simulations $\sigma \sim 10^{-3} - 10^{-1}$

²Stone et al 1992, Spruit et al 1997, Matt et al 2003, Fendt 2006, Romanova et al 2009

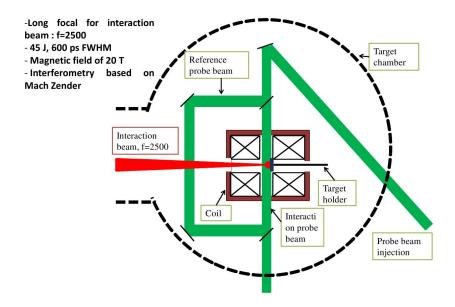
Laser-driven, magnetically collimated jets

Experiments recently performed on the ELFIE 100 TW laser at the Ecole Polytechnique

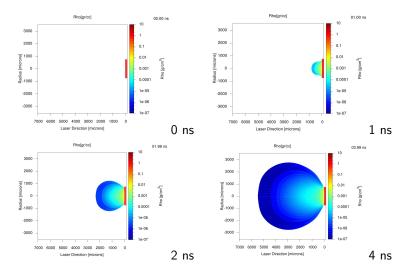

Interaction of laser produced plasma plume with an *externally* generated magnetic field

ightarrow current pulse $\sim 200 \mu s \gg au_{\it laser}$

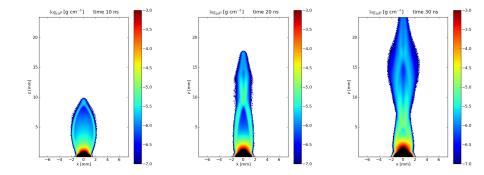
$$\rightarrow B = 0 - 40$$
 Tesla


$$ightarrow \sigma = rac{B_z^2}{4\pi
ho v_z^2} \sim 1 - 0.01$$

Laser: ELFIE 100 TW, 2 beams 30 TW (10 J, 300 fs), one long pulse (50 J, 500 ps), one probe beam (100 mJ, 300 fs).

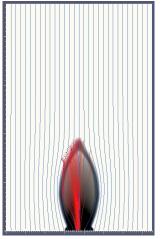

Laser-driven, magnetically collimated jets

Experiments recently performed on the ELFIE 100 TW laser at the Ecole Polytechnique

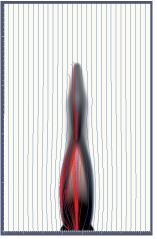


Laser-driven, magnetically collimated jets

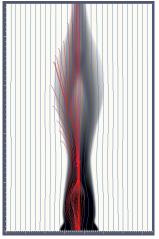
Laser-target interaction and initial hydrodynamic plasma evolution modelled with DUED³



³Atzeni 1986

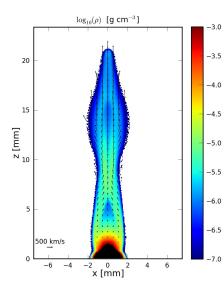

Aluminium, 10 Tesla, 50 Joules

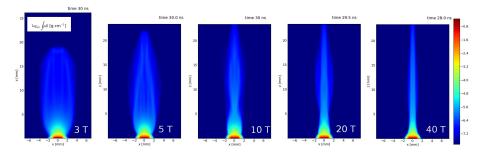
- 1. Cavity-shell formation
 - High-beta cavity
 - Formation of a shell of shocked material and compressed B
 - Re-direction of plasma along cavity walls


10 ns

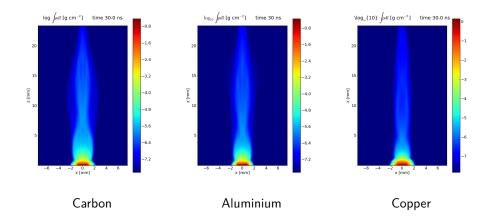
- 1. Cavity-shell formation
 - High-beta cavity
 - Formation of a shell of shocked material and compressed B
 - Re-direction of plasma along cavity walls
- 2. Jet formation
 - Re-directed flow converges towards the axis
 - Formation of a conical shock
 - Axial re-direction and jet formation

20 ns


- 1. Cavity-shell formation
 - High-beta cavity
 - Formation of a shell of shocked material and compressed B
 - Re-direction of plasma along cavity walls
- 2. Jet formation
 - Re-directed flow converges towards the axis
 - Formation of a conical shock
 - Axial re-direction and jet formation
- 3. Re-collimation
 - Secondary cavity
 - Re-collimation, conical shock and jet

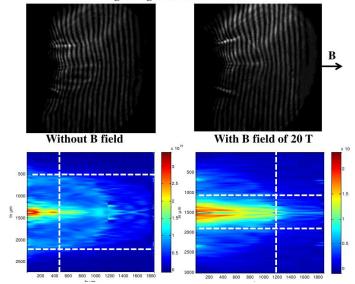

Characteristic flow parameters

- $ightarrow\,$ v_{flow} $\sim 100-500\,$ km/s
- $\rightarrow\,$ Mach number ~ 5
- $\rightarrow\,$ Alfvenic Mach number $\sim3-5$



Effects of the magnetic field strength

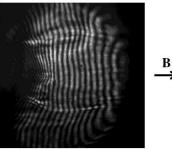
Collimated jet formation suppressed at low field strength



Effects of target material (radiative losses)

Preliminary analysis of experimental results

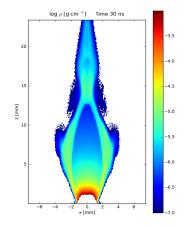
Cu 250 μm, RPP, I~1.10¹² W/cm², 5 ns after the beginning of the interaction



Preliminary analysis of experimental results

Cu 250 μm, RPP, I~1.10¹³ W/cm², 11 ns after the beginning of the interaction

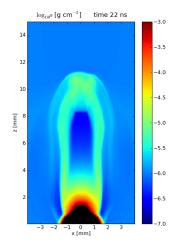
Without B field



With B field of 20 T

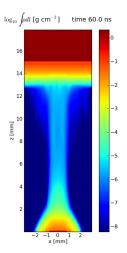
Summary and future directions

Coupling laser and external magnetic field has potential to study:


- $\rightarrow\,$ outflow collimation mechanism by a poloidal field
 - jet formation by re-converging flows

Summary and future directions

Coupling laser and external magnetic field has potential to study:


- $\rightarrow\,$ outflow collimation mechanism by a poloidal field
 - jet formation by re-converging flows
- $\rightarrow\,$ jet interaction with ambient medium

Summary and future directions

Coupling laser and external magnetic field has potential to study:

- $\rightarrow\,$ outflow collimation mechanism by a poloidal field
 - jet formation by re-converging flows
- $\rightarrow\,$ jet interaction with ambient medium
- $\rightarrow\,$ magnetized accretion shocks

