An Experimental Platform for Creating White Dwarf Photospheres in the Laboratory

Ross E. Falcon

Gregory A. Rochau James E. Bailey Alan L. Carlson Matthew R. Gomez Tom J. Nash Jennifer L. Ellis Thomas A. Gomez Michael H. Montgomery Don Winget

Sandia National Laboratories

University of Texas at Austin

9th International Conference on High Energy Density Laboratory Astrophysics Tallahassee, FL -- May 1, 2012

White Dwarfs ≈ Retired Stars

- End point of stellar evolution for most stars, including our Sun
- Compact object

 $\sim 2/3~M_{\rm Sun}$, $\sim 1~R_{\rm Earth}$

Electron degenerate core, stratified envelope

- No nuclear fusion in core
 - Electron degeneracy pressure provides support against gravity
 - Star exponentially cools with time

White Dwarf Atmospheric Parameters

- Effective temperature (T_{eff})
- Surface gravity (log g)
- Composition, Magnetism

Cosmochronology

Image: FORS, 8.2-m VLT Antu, ESO

EOS

Asteroseismology

Illustration: Harvard-Smithsonian Center for Astrophysics/Travis Metcalfe, Ruth Bazinet

Initial-Final Mass Relation

Image: H. Bond (STScI), R. Ciardullo (PSU), WFPC2, HST, NASA, F. Hamilton

Type la Supernovae

Illustration: David A. Hardy, PPARC

Intergalactic Distances

Determining WD Atmospheric Parameters

- Compare observed spectra with synthetic spectra from WD atmosphere models
- The *spectroscopic method* (see, e.g., Bergeron et al. 1992) is:
 - Precise
 - $\delta T_{\rm eff}/T_{\rm eff} \sim 5\%$
 - δlog g/log g ~ 1%
 - Widely-used; more than 30,000 WDs
 - Palomar-Green Survey
 - Sloan Digital Sky Survey
 - SPY
 - HETDEX

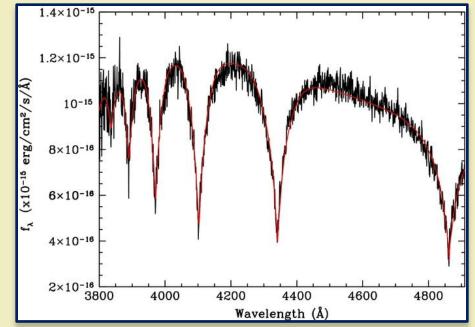


Figure from Hermes et al. (2011): KPNO spectrum of WD J1916+3938

The Spectroscopic Method Isn't Perfect?

- The "Log g Upturn"
 - Unphysical mass increase at lower $T_{\rm eff}$
 - Appears in *all* large spectroscopic surveys

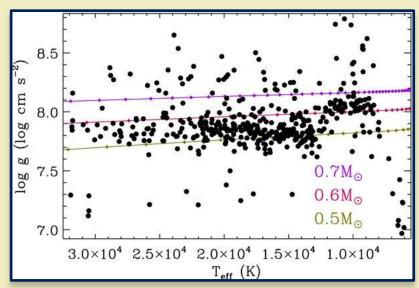
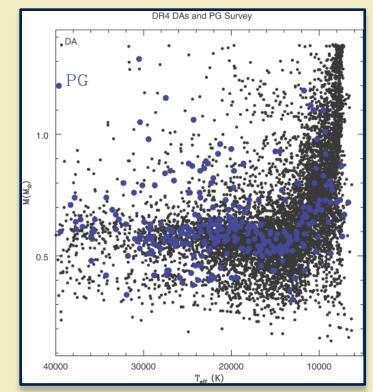
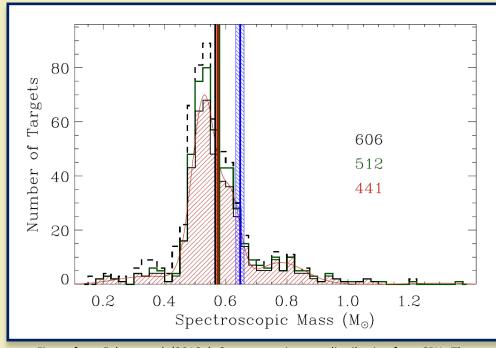
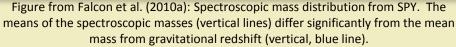


Figure from Falcon et al. (2010a): 419 DA WDs from SPY


Figure from Kepler et al. (2007): 3595 DA WDs from SDSS DR4 and 348 DA WDs from the PG survey (Liebert et al. 2005)

The Spectroscopic Method Isn't Perfect?

- Mean mass discrepancy at all T_{eff}
 - From gravitational redshift of ensemble of WDs

(Falcon et al. 2010a)

The Spectroscopic Method Isn't Final?

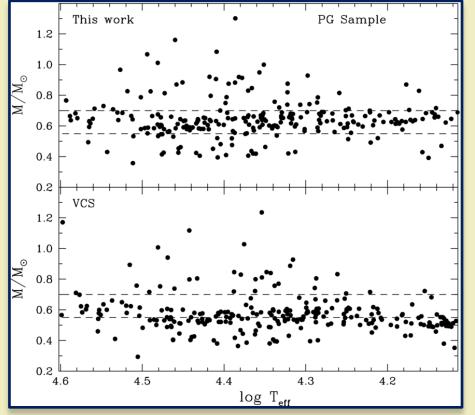
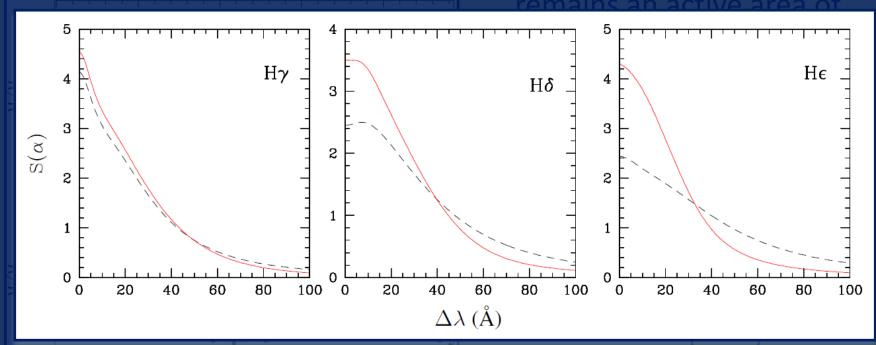



Figure from Tremblay & Bergeron (2009): Difference in fit results using WD atmosphere models with improved Stark broadened line profiles

- WD atmosphere modeling remains an active area of research
- Recent "improved" Stark broadened H line profiles (Tremblay & Bergeron 2009) resulted in systematic increases:
 - $-\Delta T_{\rm eff} \sim 200 1000 \, {\rm K}$
 - $-\Delta \log g \sim 0.04 0.1 \,\mathrm{dex}$
- Inclusion of opacity of H Ly-α significantly improved cool WD models (Kowalski & Saumon 2006)

The Spectroscopic Method Isn't Final?

WD atmosphere modeling

Courtesy of P.-E. Tremblay: Theoretical hydrogen line profiles as a function of distance from the line center, $\Delta\lambda$. The plasma conditions assumed are T = 10,000 K and $n_e = 10^{17}$ cm⁻³. The recent calculations of Tremblay & Bergeron are shown as the solid (red) lines, and the previous Vidal-Cooper-Smith (VCS) calculations are shown as the dashed (black) lines.

Figure from Tremblay & Bergeron (2009): Difference in fit results using WD atmosphere models with improved Stark broadened line profiles

Saumon 2006)

What's Been Done (in the Lab)

History of Experiments

Year	Authors	Plasma Source		
1962	Berg et al.	Shock tube		
1965	McLean et al.	Shock tube		
1967	Hill et al.	Arc discharge		
1968	Morris et al.	Arc discharge		
1968	Shumaker et al.	Arc discharge		
1969	Griffith et al.	Arc discharge		
1969	Birkeland et al.	Arc discharge		
1969	Bengtson et al.	Shock tube		
1972	Wiese et al.	Arc discharge		
1980	Baessler & Kock	Arc discharge		
1981	Helbig & Nick	Arc discharge		
1990	Uhlenbusch & Viöl	Laser-induced discharge		
1995	Parigger et al.	Laser-induced breakdown		
2000	Escarguel et al.	Laser-induced breakdown		
2003	Flih et al.	Laser-induced breakdown		
2003	Parigger et al.	Laser-induced breakdown		
2008	Parigger et al.	Laser-induced breakdown		
2010	Falcon et al.	Radiation-driven		

- Driving the experiments
 - `60s, `70s
 - Theory
 - `80s and on
 - Theory
 - Diagnostic methods
 - Now
 - Theory
 - Diagnostic methods
 - Astronomical observation

A New, Unique Perspective

- Radiation-driven experiment
 - As opposed to shocks (e.g., Bengtson et al. 1969), discharges (e.g., Wiese et al. 1972)
 - Uses large x-ray flux from z-pinch
 - Not available many places other than Z Pulsed Power Facility
- Continuum backlighter \rightarrow absorption spectra

Plasma Source	Homogenous	Stationary	Emission	Absorption
Shock-heated	Х		Х	
Arc Discharge		Х	Х	
Laser-induced Breakdown		Smooth	Х	
Radiation-driven	Х	Smooth	Х	Х

For plasmas at $T \sim 0.5 - 2$ eV and $n_e \sim 10^{17}$ cm⁻³

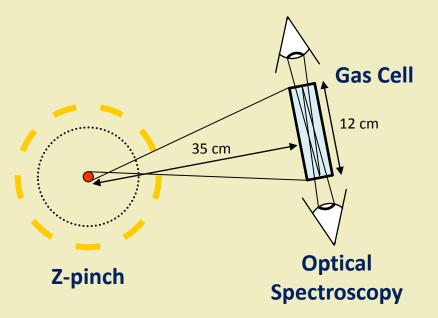
Experimental Setup

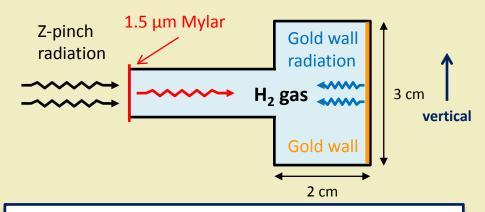
10⁶

10⁵

10³

10²


10


10⁰

0.1

Spectral Irradiance (MW/m²/eV)

- Z-pinch x-rays uniformly irradiate gold wall in gas cell
- Gold wall radiation couples well to hydrogen gas to heat through photoionization
- Total particle density set by initial fill pressure

Z-pinch radiation (~250 eV, diluted)

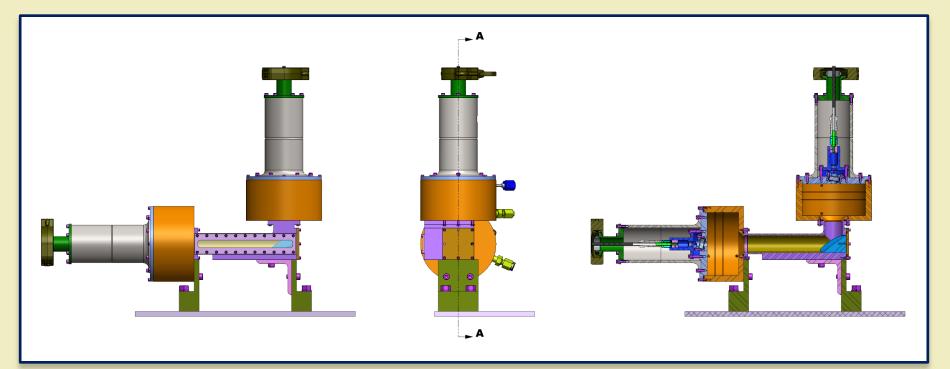
Gold wall radiation (~5 eV)

1.0

Z-pinch radiation transmitted thru 1.5 µm Mylar

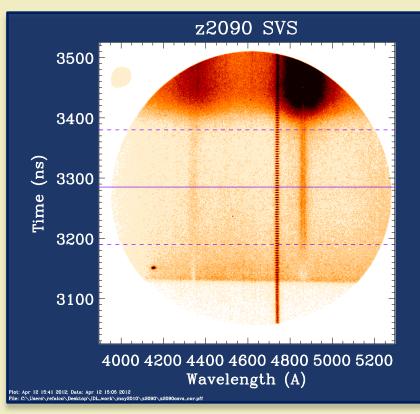
10.0

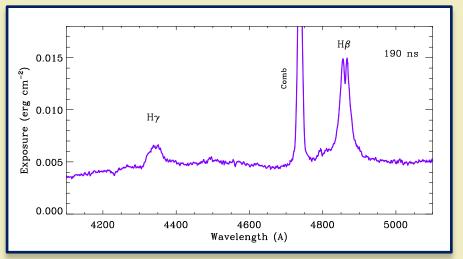
Photon Energy (eV)

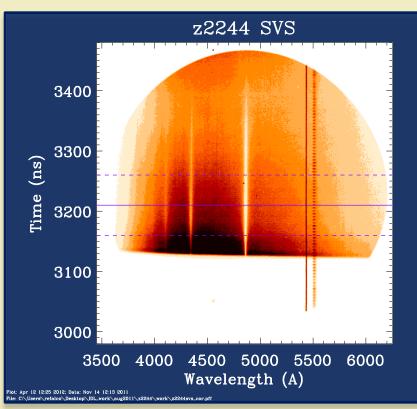

100.0

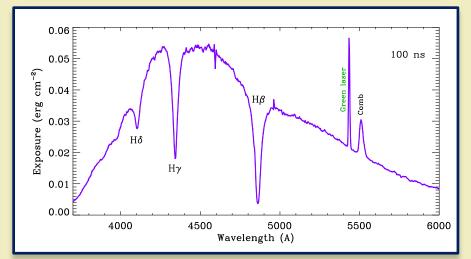
1000.0

Cross-section of Gas Cell

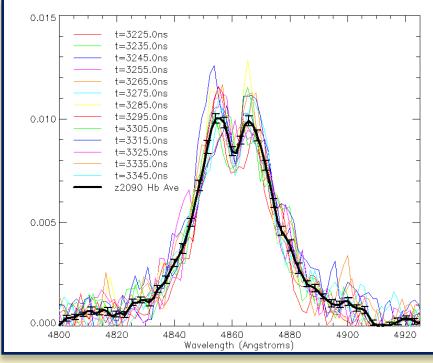

Gas Cell


- Alternate designs allow for different (and multiple) LOS options
 - Emission
 - Absorption
 - Distance from gold wall
 - Length of plasma

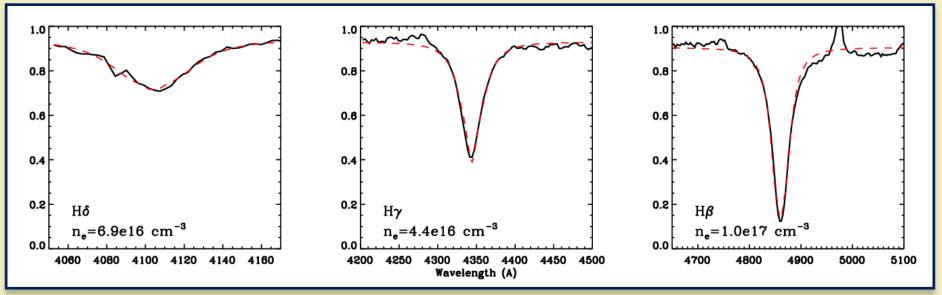



Emission

Absorption



Hβ, the Standard


 First shot displayed agreement with arc discharge experiment of Wiese et al. (1972)

• Hβ shows stability in time

Spectroscopic Line Fits

- Using VCS theory
 - Neglecting optical depth effects
- First fits to absorption data from experiment
- Sufficient quality to begin discriminating between theories

120 ns integration from shot z2267

(Near-term) Strategy

- Measure relative line shapes of Hβ, Hγ, Hδ, (Hε) for H plasma at WD photospheric conditions (T ~ 1 eV, n_e ~ 10¹⁷ cm⁻³)
 - Gas fill temperature, pressure \rightarrow total particle density
 - H β line shape \rightarrow electron density $n_{\rm e}$
 - Gold wall temperature \rightarrow radiation temperature T_r
 - Absolute intensity, absorption, emission \rightarrow level populations
- Compare to VCS, TB09, other *theoretical* line shapes
 - WD test case at recent Spectral Line Shapes in Plasmas Workshop in Vienna
- Compare to Wiese et al., other *experimental* line shapes

Pros/Cons of Platform

<u>Strengths/Potential</u>

- Continuum backlighter (for absorption measurements)
- Additional plasma diagnostics in development
- Ability to investigate other gases (He, CO2, etc.)
- Ability to explore time-dependent, non-LTE, collisional/radiative atomic kinetics
- Weaknesses/Limitations
 - Harsh environment hard radiation, debris
 - Experiment lasts 10s to 100s of ns

References & Additional Information

Cosmochronology

- Winget et al. 1987, *ApJ* , 315, L77
- Crystallization in WD Interiors
 - Montgomery et al. 1999, *ApJ*, 525, 482
 - Winget et al. 2009, ApJ, 693, L6

Hydrogen Line Shapes – Laboratory Experiments

- Bengtson et al. 1969, ApJ, 157, 957
- Berg et al. 1962, *Phys. Rev.*, 125, 199
- Falcon et al. 2010b, *AIP Conf. Proc.*, 1273, 436
- Wiese, Kelleher & Paquette 1972, Phys. Rev. A, 6, 1132

Hydrogen Line Shapes – Theory

- Seaton 1990, Jour. of Phys. B, 23, 3255
- Tremblay & Bergeron 2009, *ApJ*, 696, 1755
- Vidal, Cooper & Smith 1970, JQRST, 10, 1011

Initial-Final Mass Relation

- Williams, Bolte & Koester 2009, ApJ, 693, 355

WD Asteroseismology

- Hermes et al. 2011, *ApJL*, 741, L16
- Winget & Kepler 2008, ARA&A, 46, 157

WD Evolution

– Mestel 1952, MNRAS, 112, 583

WD Spectroscopy and Atmospheres

- Bergeron, Saffer & Liebert 1992, ApJ, 394, 228
- Bergeron, Gianninas & Boudreault 2007, ASP Conf. Ser., 372, 29
- Dufour et al. 2008, *ApJ*, 683, 978
- Falcon et al. 2010a, *ApJ*, 712, 585
- Kepler et al. 2007, MNRAS, 375, 1315
- Koester et al. 2009a, Jour. of Phys. Conf. Ser., 172, 012006
- Koester et al. 2009b, *A*&*A*, 505, 441
- Kowalski & Saumon 2006, ApJ, 651, L137
- Liebert, Bergeron & Holberg 2005, ApJS, 156, 47
- Tremblay & Bergeron 2009, *ApJ*, 696, 1755

X-ray Transmission

– Henke, Gullikson & Davis 1993, ADNDT, 54, 181

Z Facility at Sandia as X-ray Source

- Bailey et al. 2007, *Phys. Rev. Letters*, 99, 265002
- Bailey et al. 2009, *Phys. of Plasmas*, 16, 058101
- Mancini et al. 2009, Phys. of Plasmas, 16, 041001
- Matzen et al. 2005, Phys. of Plasmas, 12, 055503
- Rochau et al. 2008, Phys. Rev. Letters, 100, 125004
- Sanford et al. 2002, Phys. of Plasmas, 9, 3573