Alternative methods of producing photoionised plasmas in the laboratory

Ed Hill and Steve Rose Imperial College, London

(NASA)

Photoionised astrophysical plasma experiments

'Astrophysical'

Low density

Typically complex radiative transport and atomic kinetic problems

Photoionised

Radiation field dominates the atomic kinetics High colour temperature in our case Inner-shell photoionised Over-ionised relative to the electron temperature

Experiments

To calibrate and validate the models Allows us to consider simpler cases

AIM: Low density + Photoionised + Inner shell photoionised

Motivation

The forbidden line is a decay from a **metastable state**, so the spectrum shows the population of that state – tests the atomic kinetics

The forbidden line is a characteristically low density phenomenon

New parameter: $P_Z \approx 0.81 \times \frac{n_e}{\sqrt{T_e}Z^{11}}$

Use of Krypton

- Using Krypton exploits the strong Z dependence $P_Z pprox 0.81 imes rac{n_e}{\sqrt{T_c} Z^{11}}$
- Now have low density kinetics i.e. the forbidden line is visible

Parametrisation of recent experiments

Characterised by a large photoionisation parameter

 $\xi = \frac{l}{n_e}$

The importance of the radiation field rates relative to the plasma rates

Experiment	Year	Materials	Density cm^{-3}	T_e (eV)	$T_r (\mathrm{eV})$	ξ (prefactor)
Bailey [6]	2001	Ne	$10^{18}(n_i)$	10-100	50	$7 (4\pi)$
Morita [50]	2001	С	$2 \times 10^{19} (n_i)$	8	80	_
Foord $[21]$	2004	F, Na, Fe	$2 \times 10^{19} (n_e)$	150	165	20-25 (16 π^2)
Wang $[75]$	2008	Ν	$1.4 \times 10^{19} (n_e)$	20	80	20-25 $(4\pi?)$
Fujioka [25]	2009	Si	$10^{19}(n_i)$	30	480	5.9 $(16\pi^2)$
Hall [34]	2010	Ne	$2-8\times 10^{18}(n_i)$	30	300	2.5-3 (4π)
Astrophysical case		H-Fe	$10^9 - 10^{13}(n_e)$	10	1000	$\sim 1000 (1)$

However, limited, since takes no account of the frequency distribution of the incident radiation field or the absorption cross-section

Redefining the radiation field

- Still need to Inner shell photoionise the plasma...
- Temperature of Planckian needed Z² impracticable
- However, the Krypton only 'sees' the radiation at frequencies where it absorbs

Redefining the radiation field

Still need to Inner shell photoionise the plasma...

Temperature of Planckian needed Z² – impracticable

However, the Krypton only 'sees' the radiation at frequencies where it absorbs

Such radiation fields exist: Underdense targets (Babonneau, PoP 2008)

Choose a slightly higher Z than Krypton e.g. Molybdenum

Simulation

Krypton, $T_e = 200 \text{eV}$, $n_e = 10^{18} \text{cm}^{-3}$, ionised by a Molybdenum underdense target at 200µm distance, 0.5% of E₁=5kJ (ORION) in the K-shell

Experimental design I

Krypton confined in a gas cell, Molybdenum patch on wall thick walls possible – effect on solid C is minimal – allows a wide range of densities

Shocks, heating through wall etc. not important (Renaudin, PRE 1994)

Experimental design II

The incident laser is unidirectional, will allow embedding of the source within a plasma, for example:

- In the vicinity of colliding expanding gas puffs
- In a plasma designed to have significant optical depth

Conclusions

Have discussed a new method of producing photoionised plasmas with:

Low density kinetics at lab densities Inner shell photoionisation

The experiment is practicable – involves a fusion of available experimental techniques

Has unique capabilities e.g. embedding of sources and non-destructive to adjacent solids

Provide new test for atomic physics, atomic kinetics and radiative transport models