Early-time evolution of radiative shocks on the Omega Laser

Carolyn C. Kuranz

University of Michigan

HEDLA 2012

Shock waves become radiative when... Radiative energy flux would exceed incoming material energy flux Where post-shock temperature is proportional to u_s^2 The ratio of these energy fluxes is proportional to u_s^5/ρ_o Implying threshold velocities

Radiative shocks are abundant in our universe

- Supernova shocks
 - During propagation through the star and as it emerges
- Supernova ejecta can develop into a radiative shock
- Supernova remnants can enter a radiative phase
 - Some accretion phenomena

Many radiative shock experiments have been performed at HEDP facilities (an abbreviated list)

- Driven radiative shock waves
 - Bouquet, PRL 2004, Koenig, PoP 2006, Reighard, PoP 2006, Doss PoP 2009 and others
- Radiative blast waves
 - Grun, PRL 1991, Edwards PRL 2001, Peterson, 2006, Hansen, PoP 2006, Moore PRL 2008 and others
- Reverse radiative shock waves (relevant to accretion phenomena)
 - Talks by Suzuki-Vidal, Loupias, Krauland and Felize
- Facilities include LULI, Omega, Pharos, Janus, Vulcan, Z machine, Z-beamlet, MAGPIE, NIF (soon) and others

We seek to understand the early-time evolution of a driven radiative shock waves

- Irradiance of ~ 10¹⁵ W/cm²
- Shock launched in Be and moves into Xe gas at 1.1 atm
- Shock velocities of over 100 km/s

We observe these shocks with x-ray radiography from 2 views

The shock is at ~600 µm at 4.5 ns

Results from data analysis of streaked and area radiography

Simulations of the experiment are performed with the CRASH code

- The CRASH code includes
 - 3D Radiation Hydrodynamics
 - Flux-limited multigroup diffusion
 - Models laser energy deposition
- See posters/talks by Fryxell, Malamud, Moran-Lopez, Myra, Rutter, Sweeny, Trantham, Van der Holst

Conclusions and future directions

- We create driven radiative shocks in the laboratory with velocities of over 130 km/s!
- We have applied a variety of diagnostic techniques including x-ray radiography, optical pyrometery, and x-ray Thomson scattering
- We are using the CRASH code to model the experiment
- We have a radiative shock experiment on NIF on June 15th!

This research was supported by the DOE NNSA under the Predictive Science Academic Alliance Program, Stewardship Sciences Academic Alliance and National Laser User Facility program

Talk Outline

- Description of radiative shocks
- Motivation and astrophysical connection
- Target and diagnostic description
- X-radiography results
- Comparison to simulations with the CRASH code

Conclusions and future directions

