Radiation-MHD Models Of Photoionised Pillars

Jonathan Mackey \& Andrew J. Lim
Dublin Institute for Advanced Studies, Ireland Argelander Institute for Astronomy, Bonn, Germany

- Observational overview and motivation
- Introduction to code and methods
- Simulation initial conditions
- Results in weak and strong B-field limits
- Comparison to observations

Ideal and Real HII regions around massive stars

- From van Marle et al. (2004,RMxAC,22, I36).
- Shows wind, hot bubble, HII region, ISM.
- Spherically symmetric...
- but contains 2 thin shells.

101^{*}
- IC I396 in H α (Barentsen+,20II)
- HIl region boundary has pillars, clumps, substructure, including the "Elephant Trunk nebula". A broken shell.
- Wind-HII region interface not visible, so maybe no shell there.

IC I396: size ~ 30 pc; age 2-3Myr

RCW 120: Younger, smaller HII Region

RCW I20: The Perfect Bubble

- Image from Deharveng+ (2009,A\&A,496, I77). Blue is H α, green is Spitzer 8 $\mu \mathrm{m}$ and red $24 \mu \mathrm{~m}$.
- 8 and 24μ figs shown separately below (V. Gvaramadze).
- ~3.5pc diameter.
- Age ~400 kyr (dynamiçal) ${ }^{*}$
- lonising star O9.5V
- Basically spherical, small-scale corrugations and pillars.
- Complex interaction between photoionisation, stellar winds, and possibly stellar motion.

M1.6 and NGC 661| (Eagle Nebula)

M16 © Anglo-Australian Observatory
Photo by David Malin

M1.6 and NGC 661 I (Eagle Nebula)

M16 © Anglo-Australian Observatory
Photo by David Malin

MI6 and NGC 66II (Eagle Nebula)

MI 6 and NGC 66 . (Eagle Nebula)

MI6 and NGC 66II (Eagle Nebula)

- - H α image from AAT.
- Main image from HST (Hester et al. I996).
- IR from VLT+ISAAC (McCaughrean+,2002,A\&A)
- MI6 is a young massive starforming region
- ~2 Myr old
- ~ 0-20 pc diameter
- Much less spherically symmetric than RCW I20.
- Has large pillars/elephant trunks and other structures.

- Difference likely because MI6 is larger and older.

Elephant Trunks in H II regions

- Found in most HII regions.
- Multiple possible formation mechanisms (Williams+200I, Mizuta+2007, Kane +2005,Whalen+2008).
- Formation by...
- I-front instabilities?
- Collect and collapse?
- Shadowing due to pre-existing structure?
- All of the above?
- Magnetic fields dynamically important?
- Many pillars have embedded YSOs
- Is star formation triggered?

- Do structures 'remember' formation mechanism?

Magnetic Fields within in MI6

- Dust grains are aligned by magnetic fields, resulting in polarised emission (far IR) and absorption (optical).
- Sugitani et al. (2007,PASJ) measured polarisation of background stars to study magnetic field in MI6.
- Found large-scale coherent field (right).
- Field in pillars is aligned with pillar, misaligned with ambient field.
- Related to formation
 mechanism? Field strength?

Magnetic Fields within in MI6

Magnetic Fields within in MI6

Magnetic Fields within in MI6

Questions addressed

-Effect of the ionisation-driven dynamics on the initial magnetic field?
-Effect of the B-field on the pillar morphologies?
-Effect of the B-field on photoevaporation flows?

RMHD - Computational Methods

- Grid-based code (Mackey \& Lim, 20I0,20II; Mackey,20I2), based on Falle+(I998) 2nd order integration scheme for MHD.
- Dynamics: Solves the Euler or Ideal MHD equations on a uniform grid using a shock-capturing finite volume scheme with 2 nd order spatial and temporal accuracy.
- Dedner+(2003) mixed-GLM divergence cleaning.
- Ray-Tracing:Track ionising radiation from discrete sources using the short characteristic tracer with the "On-the-Spot" approx.
- Microphysics:Within each cell we track non-equilibrium ionisation, heating and cooling by radiative and collisional processes (explicitly for Hydrogen, indirectly for others). Operator-split from dynamics.
- Methods are similar to those used in Lim \& Mellema (2003), and the Mellema+(2006,NewA, I I,374) C2-ray algorithm.
- Parallelised with MPI by domain splitting; rays cross domains causally, but still scales well to at least 512 cores.

Simulation Initial conditions

- Simulation box $6 \times 3 \times 3$ pc ($384 \times 192 \times 192$).
- Star at [0,0,0] emits 10^{50} ionising photons $/ \mathrm{sec}$.
- Background density $\mathrm{n}=200 \mathrm{~cm}^{-3}$.
- 3 almost collinear clumps, mass 28 Msun, with overdensity 500x.
- Two field orientations:
$\mathrm{b} \simeq[0,0, \mathrm{I}],[1,0,0]$
("perpendicular" and "parallel").
- Three strengths: $|\mathrm{B}| \simeq[18,53, \mid 60] \mu \mathrm{G}$,
- corresponding to $[\beta \gg I, \beta \sim I, \beta \ll I]$ respectively.

Weak, perpendicular B-field

Left: B-field along Line-of-Sight

Right: B-field perpendicular to LOS

Weak, Perpendicular B-field - 25kyr

Weak, Perpendicular B-field - 50kyr

Weak, Perpendicular B-field - I00kyr

Weak, Perpendicular B-field - I50kyr

Weak, Perpendicular B-field - 200kyr

Weak, Perpendicular B-field - 250kyr

Weak, Perpendicular B-field - 300kyr

Weak, Perpendicular B-field - 350kyr

Weak, Perpendicular B-field - 400kyr

Weak, Perpendicular B-field - 450 kyr

Weak, Perpendicular B-field - 500 kyr

Medium strength, perpendicular B-field

Medium, Perpendicular B-field - 25 kyr

Medium, Perpendicular B-field - 50 kyr

Medium, Perpendicular B-field - I00 kyr

Medium, Perpendicular B-field - I50 kyr

Medium, Perpendicular B-field - 200 kyr

Medium, Perpendicular B-field - 250 kyr

Medium, Perpendicular B-field - 300 kyr

Medium, Perpendicular B-field - 350 kyr

Medium, Perpendicular B-field - 400 kyr

Medium, Perpendicular B-field - 450 kyr

Medium, Perpendicular B-field - 500 kyr

Strong, perpendicular B-field

Strong, Perpendicular B-field - 25 kyr

Strong, Perpendicular B-field - 50 kyr

Strong, Perpendicular B-field - I00 kyr

Strong, Perpendicular B-field - I50 kyr

Strong, Perpendicular B-field - 200 kyr

Strong, Perpendicular B-field - 250 kyr

Midplane Slice, 250kyr

Projection: B-orientation and $\mathrm{N}(\mathrm{H})$

Strong, Perpendicular B-field - 300 kyr

Strong, Perpendicular B-field - 350 kyr

Strong, Perpendicular B-field - 400 kyr

Midplane Slice, 400kyr

Projection: B-orientation and N(H)

Strong, parallel B-field

Strong, Parallel B-field - 25 kyr

Strong, Parallel B-field - 50 kyr

Strong, Parallel B-field - 75 kyr

Strong, Parallel B-field - I 00 kyr

Strong, Parallel B-field - I 50 kyr

Strong, Parallel B-field - 200 kyr

Strong, Parallel B-field - 300 kyr

Strong, Parallel B-field - 400 kyr

Strong parallel field, 400kyr

Projection: B-orientation and $\mathrm{N}(\mathrm{H})$

 $6 \mathrm{~L}+\partial 0^{\circ} \varepsilon$

H α Emission from

 perpendicular field models- Calculated by integrating lines of sight through the simulation box with an emissivity appropriate for $\mathrm{H} \alpha$, and absorption by dust.

Comparison of H α Emission (25 kyr)

Left: $x-y$, LOS $=-z ;$ Right: $x-z$, LOS= y. Top to bottom: R2 (weak), R5 (medium), R8 (strong field).

Comparison of H α Emission (I00 kyr)

Left: $x-y$, LOS $=-z ;$ Right: $x-z$, LOS $=y$. Top to bottom: R2 (weak), R5 (medium), R8 (strong field).

Comparison of H α Emission (200 kyr)

Left: $x-y$, LOS $=-z ;$ Right: $x-z$, LOS $=y$. Top to bottom: R2 (weak), R5 (medium), R8 (strong field).

Comparison of H α Emission (300 kyr)

Left: x-y, LOS = -z; Right: x-z, LOS= y. Top to bottom: R2 (weak), R5 (medium), R8 (strong field).

Comparison of H α Emission (400 kyr)

Left: $x-y$, LOS $=-z ;$ Right: $x-z$, LOS $=y$. Top to bottom: R2 (weak), R5 (medium), R8 (strong field).

Ha: comparison between parallel and perpendicular strong B-fields

100 kyr

Left: x-y, LOS= -z; Right: x-z, LOS= y. Top is R8 (perpendicular B-field) bottom is R9 (parallel B-field).

H α Emission: comparison between parallel and perpendicular B-fields

Left: $x-y$, LOS $=-z$; Right: $x-z$, LOS= y. Top is R8 (perpendicular B-field) bottom is R9 (parallel B-field).

H α Emission: comparison between parallel and perpendicular B-fields

Left: $x-y$, LOS $=-z$; Right: $x-z$, LOS= y. Top is R8 (perpendicular B-field) bottom is R9 (parallel B-field).

Comparison to Observations

- B-field strengths not measured in any pillars, and orientation only measured in Eagle nebula pillars.
- Strong B-field leaves signature in photoevaporation flow, most obvious in H α emission.

Weak B-field model at 400 kyr

- B-field in pillar/globule is now aligned with pillar's axis.
- Field around tail region influence by "cooling flow" into shadowed region.
- Radial field from photoevaporation flow.
- Also seen in medium strength case.
- Aligned field component increases dramatically in strength.

Parallel Field Evolution

- x-component of B in dense gas is shown as function of time.
- Weak field (R2) reorients almost completely.
- Medium field (R5) changes significantly.
- Strong field (R8) basically unchnaged

- Basic agreement with Henney+(2009) models.

Eagle Nebula (Sugitani+,2007)

- 18 and 53μ G simulations can match Sugitani+(2007) observations, but $160 \mu \mathrm{G}$ field model does not.
- This field orientation also seen in some cometary globules (Sridharan+1996, Bhatt I999, Bhatt+2004).
- What is the dependence on initial conditions?
- Arthur+(20 I I,MNRAS) have shown that pillars formed from turbulent magnetised initial conditions already had different field orientations compared to surrounding lower density gas.
- May be poor constraint on initial conditions or formation mechanism.

NGC6357 and Pismis 24

- HST press release image (lines to trace ionised gas).
- Credit: NASA, ESA, and J. Maíz Apellániz (IAA, Spain)
\bullet Bohigas et al. (2004, AJ, I27,2826).
- Continuum subtracted H α image.
- "Bright Ridge" is the brightest feature on image.
- H α emissivity, I ~ $n_{e} n(H+) / T_{e}$
- If isothermal, I ~ $n_{\mathrm{e}} \mathrm{n}(\mathrm{H}+)$
- Conclude that the ridge contains the densest concentration of ionised gas.
- Magnetically confined?
- Or ram-pressure?

More H α : NGC 3603 from HST

- Another linear feature above bright rim of elephant trunk.
- Photoevaporation flow confined by something. . .
- . . . gas pressure, ram pressure, or magnetic field?

Credit: NASA, ESA, R.O’Connell, F. Paresce, E. Young, Hubble Heritage Team

Conclusions

- Observations of elephant trunks can in principle constrain field strength in H II regions.
- A sufficiently strong magnetic field can (I) Prevent field alignment with pillar/globule.
(2) Significantly change the structure which develops.
(3) Confine the photoevaporation flow.
- Rocket effect tends to align magnetic field with radial direction (cf. Williams 2007, see also Henney+2009,Arthur+20II).
- Comparing our results to observations in MI6 (Sugitani et al. 2007) suggests ambient field $B<=50 \mu G$.
- lonised gas may give less model-dependent constraints.
- A simple one-D model can explain the formation of a bright bar/ridge of ionised gas in strongly magnetised models.
- Ram-pressure confinement could be distinguished by line-of-sight velocity information.

IC I396 Details

- H α image from Barentsen, Vink et al. (20I I,MNRAS)
- IC 1396: age is ~2-3 Myr,
- diameter ~35 pc.
- Main exciting star is O6V,
- part of cluster Trumpler 37.
- H α emission roughly spherical, but not smooth.
- Pillars, clumps, ridges
- Significantly more complex than RCWI20; larger and older.

Second Order Explicit Algorithm

Algorithm 3

* 2 raytracings per step.
* Time-centred column densities mean photon conservation is 2nd order.
* Still explicit scheme.
* Fits in well with 2nd order dynamics update.
* Allows full ionisation of cell in 4 timesteps
(8 raytracings).
* Still needs 4 steps for l-front to cross cell.

Planar, constant velocity, I-fronts

* Monochromatic radiation
* No recombinations
* l-front has constant velocity $\mathrm{v}=\mathrm{F} / \mathrm{n}(\mathrm{HO})$
* 13 timestep criteria: 0-4: dt=K.(1/ydot) 5-8: dt=K.(y/ydot) 9-12: dt=K.min(y/yd,E/Ed)
* Implicit A1 v. good by construction.
* A3 converges much faster
--> More restrictive dt --> than A2, error $<1 \%$ very quickly.

Accuracy vs. Runtime

* Multi-frequency radiation, no dynamics, 1D expansion of Stromgren sphere.
* L1 error after one recombination time, as function of calculation time.
* 4 different cell optical

 depths: dTau=1, 3, 10 , and 30.

Accuracy vs. Runtime

Accuracy vs. Runtime

Accuracy vs. Runtime

Jonathan Mackey - NAM/AG 2012

Accuracy vs. Runtime

Parallel Scaling A1 vs. A3

* A2/A3 scale better than A1 because microphysics integration is not in the raytracing step.
* Scaling limited by causal raytracing.
* Runtime plotted vs. number of cores, N, using JUROPA at Juelich.
* Tests w/ SMT have 2 MPI processes per core.
* Ideal scaling $t=c / N$ (c a constant)
* 2D RT has $t=c . N^{\wedge}(-1 / 2)$ 3D RT has $t=c . N^{\wedge}(-2 / 3)$

Jonathan Mackey - NAM/AG 2012

Parallel Scaling - 2D Static

Jonathan Mackey - NAM/AG 2012

Parallel Scaling - 3D Static

Parallel Scaling-2D Dynamic

Jonathan Mackey - NAM/AG 2012

Conclusions

* 2nd order explicit algorithm (A3) is both more accurate and efficient than 1st order scheme (A2) commonly used.
* A3 is also more efficient than implicit method for this implementation,
(but see Friedrich+(2012) for updated C2-ray algorithm).
* A3 allows full ionisation of grid-cell with 8 raytracings, with error <2\% for all cases tested.
* This is a factor of $5-7 x$ better than 1st order scheme.
* Upgrade from A2 to A3 should be straightforward, regardless of grid structure (also for diffuse radiation?).
* Parallel scaling is good - 50\% efficiency on 256 cores, and continued speed-up to 1024 cores (for uniform grid).

