
A Simulation Study of Intracluster Turbulence 

Dongsu Ryu (Chungnam National U, Korea) 
Collaborators: 

David Porter (Minnesota, USA), Tom W. Jones (Minnesota, USA), 
Jungyeon Cho (CNU, Korea) 

w B 

April 30 –  May 4, 2012                                     HEDLA 2012                                          Tallahassee, Florida, USA 



Clusters of 
galaxies 

aggregates of galaxies, which are the largest known 
gravitationally bound objects to have arisen thus far in 
the process of cosmic structure formation 

in visible (core region) <- star light 
in X-ray <- hot gas of T ~ 8 keV 

The intracluster 
medium (ICM) 

the superheated plasma with T ~ a few keV, 
presented in clusters of galaxies 

Coma Cluster 
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Perseus Cluster 

X-ray from hot gas of T ~ 5 keV 
radio due to non-thermal processes 
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The large-scale structure 
of the universe seen in 
the galaxy distribution 

growth of primordial density perturbations 
via gravitational instability to form the 
large scale structure of the universe 

SDSS 

“cosmic web of filaments” 

Coma cluster 
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Some Evidence for turbulence in clusters 

- pressure fluctuations in Coma (Schuecker et al 2004) 

 ∆P/P ~ 0.1 

 n ~ 1/3 – 7/3 (Pk ~ k-n) -> consistent to Kolmogorov  

- X-ray surface brightness fluctuations in Coma (Churazov et al 2011) 

 ∆r/r ~ 0.1 

 n ~ 2 -> steeper than Kolmorogov (shock-dominated ?) 

- line broadening limit in A1835 (Sanders et al 2010) 

 ∆v < 274 km/sec  ->  Eturb / Etot <~ 0.1  

- patchy Faraday rotation distributions in clusters (Murgia et al 2004) 

 n ~ 0 for B -> broken power-law?     (                 ?) 

- and etc … 

                       turbulence is subsonic! 
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Ryu et al (2003) 

Mendygral et al 

Tregillis, Jones & Ryu (2004) 

- formation of large-scale structure: 
   shocks from merger, accretion, … 
 
- AGN outflows, galactic winds, … 
 
- MTI, buoyancy instabilities, … 
 
 
wide range of injection scales: microscopic scales to ~ 1 Mpc 

Drivers of turbulence in clusters  
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large-scale structure formation 

  cosmological shocks  

gravitational 
collapse 

& flow motions 
shock 

dissipation 
generation of heat 

fresh acc. & re-acc. of CRs 
genera. of magnetic fields 
generation of vorticity 

other sources, such as AGNs 
of heat, CRs, turbulence and 

magnetic fields 

the main channel to flow the 
gravitational energy to the 

intergalactic medium  

shock 
  cascade into turbulence  

turbulent amp. of mag. fields 
turbulent acceleration of CRs 

Overall picture for the cosmological shock origin 
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Mach 
number 
distribution 
of shocks 
around the 
cluster 
complex 

(Ryu et al 2003) 
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in hot gas with T > 107 

(inside and outskirts of 
clusters) 

thermal energy 
dissipated at shocks 

shocks with small Mach number 
are common and  energetically 
important inside and outskirts 
of clusters 

frequency 
of shocks 

kinetic energy flux 
through shocks 

CR energy accelerated 
at shocks 

Shocks statistics 
Kang & Ryu (2011) 
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Radio relic in 
CIZA 
J2242.8+5301 

van Weeren 
et al (2010) 

(WSRT 1.4 GHz) 

(GMRT 610 MHz) 

evidence for 
electron acceleration & 
magnetic field generation 
at weak shocks ? 



Various length scales in the intracluster medium 

mean free-path for electron-proton relaxation 
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collisionless shock waves of Much number ~ a few  



0Β

0Β

curved shock 

different jump of B 

(Bernoulli function)  

preshock density 
postshock density 
preshock flow speed 
unit normal to shock surf. 
curvature radius of surf. 

Vorticity generated at cosmological shocks 
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generation of vorticity at interacting shocks 

div(v) w 
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Turbulence energy 
of in the ICM 

assuming that vorticity 
cascades down to 
induce turbulence 

Mturb < 1 
(subsonic turbulence) 

   inside and outskirts 
   of clusters 
Eturb/Etherm ~ 0.1 – 0.2 
   inside and outskirts 
   of clusters 
   -> agrees with obs. 
Mturb ~ 1 
(transonic turbulence) 
   in filaments 

clusters 
Ryu et al (2008) 
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Vazza et al (2010) 

Turbulence in clusters: AMR simulations 

temperature 
distribution 
in a merging 
cluster 
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Turbulence amplifies magnetic fields 

     -> mangetohydrodynamic turbulence 

         in astrophysical environments 
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Magnetic fields in the intergalactic space 

clusters of 
 galaxies: 

B ~ a few mG 

filaments of 
 galaxies: 
B ~ 10 nG 

void regions: 
B >~ 10-16 G (?) 

143 Mpc 
(1 pc = 3,26 
light-year) 

distribution of cosmological shocks 
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Clusters of galaxies - magnetic fields 
Faraday rotation measure of a few x 100 rad/m2  

         -> B ~ a few mG (core region) 

(Clarke et al 2004) 

through 
clusters 

Hydra North 

Vogt & Ensslin (2005) 
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Origin of magnetic fields in clusters  

- turbulence dynamo (or small-scale dynamo) 

 

- AGN outflows, galactic winds, … 

 

- microscopic instabilities, such as mirror, fire-hose … 

    (contrinute only to very small-scale fields ?) 

 

- and etc … 
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Simulations of isothermal compressible MHDs 
to study turbulence in clusters 

- cs = 1, Vrms ~ 0.45 (so Ms ~ 0.45) at saturation 
  subsonic turbulence (Ekin/Etherm ~ 0.1) 
 
- initially very weak field with b = 106 
 
- purely solenoidal forcing 
   (and purely compressive forcing) 
 
- ideal MHD, so Pr ~ 1 
  (and Pr >> 1) 
 
- injection at Linj ~ 1/2 Lbox 
 
- in a periodic box with Lbox = 10 
  sound crossing time ~ 10 
  eddy turn-over time ~ 22 
 

- up to 20483 grid zones 

Porter, Jones, Ryu, Cho   

(in preparation) 
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Evolution of kinetic and magnetic energies 

at saturation 
Emag/Ekin ~ 1/2 
in 20483 run, 
while 
Emag/Ekin ~ 2/3 
in incompressible 
run 

Ekin 

Emag 

exponential 

linear 

saturation 
(Porter, Jones, 

Ryu, & Cho, 

in preparation) 

(magnetic Prandtle 
Number Pm = 1) 
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Growth of 
coherence length 
(inverse cascade) 
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- the scales of 
magnetic fields 
grow as 
turbulence 
develops 
- the peak of PB(k) 
occurs at ~1/2 Linj 
at saturation 

Power spectrum 

PK(k) 

PB(k) 
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Kubo number 



Resulting magnetic fields and numbers in clusters of galaxies 

density of baryonic matter 32 cm10~ n

gas temperature K10~ 8T

magnetic fields G few a~ mB

turbulent flow speed km/s 10several~ 2

turbulent energy 

gas thermal energy 

magnetic energy 

310

thermal erg/cm10~ E

311

turb erg/cm10~ E

312

magnetic erg/cm10~ E

magnetic fields 
 <- could be produced and maintained mostly by turbulence dynamo 
     but also contributed by feedbacks from galaxies 
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Conclusions 
- Intracluster media provide a distinctive environment where diverse 
   physical processes, such as shocks particle acceleration, turbulence, 
   magnetic field generation and etc, play an important role. 
 
- Understanding turbulence in intracluster medium is rather tricky, 
   mostly because the physics there is not well understood. 
 
- Laboratory experiments can help understand turbulence as well as 
   other astrophysical phenomena in intracluster media  

Once shocks are produced, 
turbulence can be induced ! 
 
Most, if not all, turbulence in 
astrophysics is induced by 
shocks or related processes. 



Viscosity and resistivity the ICM 
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Incompressible MHD turbulence with different magnetic 
Prandtle number 

Pmag(k) at saturation 

Pvel(k) at saturation 

k-5/3 

Pm = 1 

Pm = 25 

k-4 



Viscosity and resistivity the ICM 
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pp

pp

pppp
t

l
l







2

therm ~~ 

resistivity 

pe

p

t

c



2)/(
~

w




























2/1
2 4

e

e
p

m

en
w

transportation of particles is affected by magnetic fields 
               much smaller Prandtle number ? 

(?) 

or substantially smaller ? 

much smaller than viscosity? 

(?) 
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Conclusions 
- Intracluster media provide a distinctive environment where diverse 
   physical processes, such as shocks particle acceleration, turbulence, 
   magnetic field generation and etc, play an important role. 
 
- Understanding turbulence in intracluster medium is rather tricky, 
   mostly because the physics there is not well understood. 
 
- Laboratory experiments can help understand turbulence as well as 
   other astrophysical phenomena including shocks in intracluster media  

Once shocks are produced, 
turbulence can be induced ! 
 
Most, if not all, turbulence in 
astrophysics is induced by 
shocks or related processes. 



Thank you ! 
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